Name:
Date: \qquad
Geometry // Mr. Falci

1) Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
(1) Lines k_{1} and k_{2} are perpendicular.
(2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
(3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
(4) Line m is coplanar with lines k_{1} and k_{2}.
2) Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?
(1) 1
(2) 2
(3) 0
(4) infinite
3) Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
(1) 1
(2) 2
(3) more than 2
(4) none
4) If two different lines are perpendicular to the same plane, they are
(1) collinear
(2) coplanar
(3) congruent
(4) consecutive
5) In the diagram below, line k is perpendicular to plane P at point T.

Which statement is true?
(1) Any point in plane P also will be on line k.
(2) Only one line in plane P will intersect line k.
(3) All planes that intersect plane P will pass through T .
(4) Any plane containing line k is perpendicular to plane P.
6) In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
(1) plane
(3) pair of parallel lines
(2) point
(4) pair of intersecting lines
7) Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
(1) Planes P and R are skew.
(2) Planes P and R are parallel.
(3) Planes P and R are perpendicular.
(4) Plane P intersects plane R but is not perpendicular to plane R.

